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LEITER TO THE EDITOR 

The Gaussian model for fluids and covering a graph by 
spanning trees 

Ron M AdintS 
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA 

Received 5 January 1992 

Abstract A cenain power series, arising in the Gaussian model for fluids, has been 
conjectured to reduce lo a polynomial when the dimension parameter is a negative even 
integer. This conjecture is confirmed here, using a graph-theoretical interpretation of the 
coefficients. 

The Mayer cluster series for an imperfect fluid, 

expresses thermodynamic quantities (for example, pressure) in terms of the activity z 
of the d-dimensional fluid. Under the continuum Gaussian model for purely repulsive 
interactions, the coefficients b.(z) (the Mayer cluster integrals) may be explicitly 
represented as 

2"-' 
b.(d)=-E(-l)* 1 c-d'2g(n,k,c)  

n !  c a ,  

Here g(n,  k, c )  is the number of graphs with k edges on n labelled vertices that have 
complexity c. Recall that the complexity of a graph is the number of spanning trees 
it has, and is therefore positive if and only if the graph is connected. 

It has recently been noted that consideration of this model for unconventional 
values of the parameters may add to the understanding of its properties. In particular, 
numerical evidence has led Baram and Luban [l] to conjecture that if d is a negative 
even integer then b,,(d)=O for all n>ldl, so that the Mayer series reduces to a 
polynomial. This conjecture will be proved here, together with some additional proper- 
ties of the numbers b.(d) for negative even values of d. In particular, these numbers 
are found to have a sign-patter0 of period 4 (as opposed to period 2 for positive values 
of d), and they are also always integers (even after the division by n ! ) .  The main 
results are summarized in 

Theorem 1. Let d be a negative even integer. Then 

(i) b.(d)#Oexactly for l s n s l d l .  
(ii) For 1 s n s Id[, b.(d) > 0 iff n is congruent to 0 or 1 modulo 4. 
(iii) b,(d), . . . , qdl(d) are integers. 

t Research canied out during a visit to the InStitute of Mathematies and Computer Science. Hebrew 
University, Jerusalem, Israel. 
$ e-mail: radin@math.mit.edu 
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(iv) The first four coefficients are 
b,(d) = 1 

bZ(d)= -1  

b,(d) = -2(3"-' - 1) 

bd(d) =f(16" -6X8"+3X4" fl2x3" - 16) 

where m = -d/2. 

Most of these results are consequences of the following observation. 

Lemma 2. If m is a positive integer then 

where t.*(n) is the number of m-tuples ( T . : .  . . ~ TJ of spanning trees of the complete 
graph on n vertices, which cover together all the edges of the complete graph. (The 
T, need not be distinct.) 

Denote by Tm(n) the set of m-tuples mentioned in lemma 2 (so that T,,,(n) has 
t , , , (n) elements). Another useful result is 

Lemma 3. A permutation T of the vertices of K. that preserves an m-tuple in &(n) 
is necessarily an involution, i.e. T* is the identity permutation. 

Proof oflemma 2. Denote by T(G) the set of all spanning trees of a graph G, and let 
F ( n )  = T(Kn), where K .  is the complete graph on n vertices. Let #S denote the 
number of elements of a finite set S. Then 

=L( - l )k#{ (G ,  T ,,..., T,,,)IG is a subgraph of K .  (8) 
k 

with k edges, and T , ,  . . . , T,,, E T( G ) )  (9) 
= 1 x ( - l ) k # { G I G  is a subgraph of K ,  

TI,.  . . , T,eST(n) k 

that contains T, ,  . _ .  , Tm and has k edges}. (10) 
The latter equality is obtained by changing the order of summation. 

T(n) ,  let 
Let E ( G )  denote the set of edges of a graph G. Given spanning trees TI , .  . . , T,,, E 

Then 
(-l)'#{GI G is a subgraph of K .  that contains T, ,  . . . , T, and has k edges} 

k 

(-l)'#{El U S  E =  E ( K n ) ,  # E  = k} 
k 

- I  %\#U,* r i # E ( K J - # U  
-[-A) \ , - I ,  

if U = E ( K . )  
otherwise. 
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It follows that the non-zero summands in expression (10) above correspond to instances 
of U = E(&) ,  i.e., to m-tuples of trees (TI,. . , T,) that cover together all the edges 
of K.. The number of such m-tuples is precisely t , ( n ) ,  as defined above, and each of 

0 them contributes (-l)*E'K-'= (-1)';' to the sum. 

Proof of theorem 1. Assume throughout that d = -2m for a positive integer m. 
(i) By lemma 2, b. (d)=O unless it is possible to cover the complete graph on n 

vertices by m of its spanning trees, allowing repetitions. Since there are (2' edges in 
the complete graph and n - 1 edges in each tree, it is necessary for b.(d) # 0 to have 

that is 

n ~ 2 m  =Idl. (16) 

To show that this condition is also suficient, one must show that K .  may be covered 
by m spanning trees for any 1 S n S 2m. It is enough to show this for n = 2m, since a 
covering of K ,  for smaller n may be obtained from a covering of K,, by deleting 
2m - n vertices and completing the 'remains' of each spanning tree of K2, ,  in an 
arbitrary fashion, to a spanning tree of K.. Finally, to exhibit an explicit covering of 
&, by m spanning trees (actuaiiy, by m edge-disjoint iiamiiionian pathsj, iabei the 
vertices by the numbers 0,. . . , Zm- 1. Let T, (see figure 1) be the path consisting of 
the 2m - 1 edges 

lo, ml 

( m , l } , l l , m - l } . ( m - l , 2 ) , { 2 , m - 2 j ,  ... (17) 

{O, m +  ij, {m+ i, 2 m  - ij, {2m- i, m + 2 ) ,  { m + 2 , 2 m - 2 ] , .  . . 
The other paths T2. .  . . , T, are obtained from T, by cyclic rotations: To get T ,  add 
i - 1 to the label of each vertex in the description of T,, computing modulo 2m. It is 
easy to see that each edge of K 2 ,  is covered by exactly one of the trees T, , . . . , T,,,. 

(ii) The binomial coefficient (;) is even iff n is congruent to 0 or 1 modulo 4. 
(iii) Consider again the set F(n) of all spanning trees of K., together with the set 

(18) 

The symmetric group S., consisting of all permutations of n elements, acts naturally 
on the vertices of K., and therefore also on F ( n )  and Fm(n). This action separates 

of m-tuples 

FAn) = {(TI, .  . . , T,)IT. .  . . , T, E T(n)} .  

Figure 1. T,, a spanning trcc of K2*. 
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F,,(n) into equivalence classes, or orbits. If this action were fixed-point free, each 
orbit would contain exactly n !  elements, and therefore t , (n)  = #F,(n) would be 
divisible by n!. This is not always the case, as the following example shows. 

Example. Take n = 4, and label the vertices of K4 by 1 through 4. Let m = 2, and 
consider the spanning trees 

T, = { 12,23, 14) (19) 

T2={13,34,24]. 

Then T! and T2 cover all the edges of K, (see figure 2), and are both invariant under 
the permutation (12)(34) E S,. The orbit of ( T I ,  T2) in T2(4) contains only 12 elements. 
(Note that we consider ordered m-tuples of trees.) 

Nevertheless, we claim that the symmetry group of each m-tuple in F,(n) cannot be 
too large. This is essentially the content of lemma 3, which was stated above and is 
restated here with a proof. 

I E]' '.. ..*.* 

5. .... 
..' 5 

/.. " %  

4 TZ 3 

5. 
5. 

./ ........................... 
Figure 2. An invariant covering of K4 

Lemma 3. A permutation ?r of the vertices of K .  that preserves an m-tuple in F,(n) 
is necessarily an involution, i.e. a2 is the identity permutation. 

Proof: Let a E S,, preserve an m-tuple (T ,  , . . . , T , )  E Ym( n), and express ?r as a product 
of disjoint cycles. Assuming that a is not an involution, one of its cycles-say 
(U,, . . . , u,)-has length p 3. Since the trees T I , .  . . , T,, cover all the edges of the 
complete graph, at least one of them-say r.-contains the edge {U,, u2]. Since T, is 
a-invariant, it must also contain the edges {u2. IJJ, { u3, u4}, . . . ,{U,, U,]. This is clearly 

U 

Returning now to the proof of theorem 1, we see that the stabilizer of any m-tuple in 
F,(n) is a subgroup G of S. that contains involutions only. By the well-known 
theorems of Lagrange and Cauchy [4, pp 35,741, the size of G must be a power of 2 
that divides n!. Let 2q2'") be the largest power of 2 that divides n!. Then 

impossible, since a tree cannot contain any cycle. 

m m 

q 2 ( n )  = Ln/2'] < x n / 2 ' =  n 
i - I  i = ,  
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and since q 2 ( n )  is an integer, it does not exceed n - I .  The size of the stabilizer G 
therefore divides 2"-', and the corresponding orbit size is an integral multiple of 
n!/2"-'. The sum of all orbit sizes is t , (n ) ,  and therefore the number 

2"-1 

n !  
b.(-2m)= f- t , (n)  

is an integer. 

equation (2) above. 0 
(iv) Direct computation, using the original definition of the coefficients b.(d) in 

Remarks 

not always an integer is evident from the numerical values computed in [l], e.g. 
1. The fact that r , , , (n) /n!  (without multiplying by an appropriate power of 2) is 

b4(-4)=4 (SO t2(4)/4!=1/2) (23) 

or 

b,(-6)= -2944 (SO f3(6)/6!= -1977/16). (24) 

In fact, the formula for b4(-2m) in theorem 1 shows that f,(4)/4! is a non-integer 
whenever it is non-zero (i.e. for m a 2 ) .  

2. The actual power of 2 needed to turn r , (n) /n!  into an integer is, in fact, much 
smaller than the crude estimate n - 1 .  For one thing, the function q , ( n )  used in the 
above proof attains its upper bound of n - 1 if and only if n is a power of 2, since, 
for 2* c: n <2k+', 

k k 

i=,  i=, 
q , ( n ) =  ,y [n/2'J s 1 n/Z'=n-n/2k<n-1 

whereas 

(26) 
k - k - I  q2(2 ) - 2  + 2 k - 2 + . . . + l = 2 k - l .  

Moreover, let 2p1(n' denote the size of the largest subgroup of S. that contains 
involutions only. (Note that such a group must be commutative.) Then one has, in fact, 

p , (n )  = Ln/2] s q 2 ( n )  6 n - 1. (27) 

The inequality p 2 ( n ) a  Ln/2] follows from an explicit construction: partition the n 
vertices into [n/2J pairs (plus a singleton, if n is odd), and consider the group of all 
the permutations (necessarily involutions) that map each vertex to itself or to its mate 
in the pairing. The reverse inequality pz(  n )  < Ln/2] follows from the following argument 
(due to R Stanley): it is easy to see if a commutative group acts on a set of size k as 
a rransiriw permutation group (assuming the action is faithful), then this group has 
exactly k elements. Therefore, if G is a subgroup of S. consisting of involutions only, 
we may consider the various G-orbits (whose sizes add up  to n )  and conclude that 
the size of G does not exceed the product of the orbit-sizes. The product of integers 
with a given sum is maximized if almost all of them are equal to 3, but since the sizes 
in our case are all powers of 2 it follows that the maximal product is obtained when 
there are orbits of size 2 (or 4). plus one orbit of size 1 if n is odd. This maximal 
product is Z'n'2'. 



L438 Letter to the Editor 

3. The results of this letter hold in a more general context: if one defines g( G, k, e) 
to be the number of subgraphs of a given graph G which have k edges and complexity 
c, and defines bJd)  by the obvious analogue of formula (2) above (which is the 
special case G = Kn) ,  then the appropriate analogue of lemma 2 will still hold. In 
particular, bG(-2m) = 0 (for a positive integer m )  if and only if m is less than m(G), 
the minimal number of spanning trees needed to cover all the edges of G. For example, 
the two-component system discussed in [2] corresponds to the complete bipartite graph 
IC.,,,,, with n, vertices of one colour, n2 vertices of another colour, and edges connecting 
any two vertices of distinct colours. The conjecture of [2], concerning the vanishing 
cluster integrals in this case, amounts to the claim that 

The verification of this conjecture is now straightforward, using the same edge-counting 
argument as in the proof of theorem l(i): m spanning trees cover at most m( n, + n2 - 1) 
edges, wherees the graph Kn,,n2 has nln2 edges. Assuming that n , s  n2. it follows that 

as claimed. 
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